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NO, Is Produced Within Smoke & Lost (>99%) to BBVOCs — Not Aerosol

Last year 16.4  That'sthesize of ¢ |Washington D.C. Va . R - The South East Nexus (SENEX 2013) campaign intercepted a nighttime agricultural burning plume. This smoke
~this red square. - | ' plume intercept is the only known nighttime aircraft smoke sampling with NO,, N,O5, NO, and NO, measurements.
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Ponderosa pine fires emit more terpenes relative In both fuels there Is as much NO; precursor (NO,)
to rice straw fires and therefore will have a higher as there Is BBVOC to be oxidized. This leads to a

fraction of terpene oxidation products. 19% loss (out of total mass) of BBVOCs we modeled.
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